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Abstract

Let µ be a measure on a product of polish spaces X × Y . We will revisit
the disintegration of measures, a tool to convert the integrals against µ

into iterated integrals. Denoting by µX the marginal measure of µ over
X, we show the existence (µX−almost everywhere) of a family of measures
on Y , indexed by the points on X such that any integral against µ (on
X×Y ) can be realized by integrating one variable at a time, first on Y with
respect to this family, followed by integration on X against µX . We can
reverse the order of integration by interchanging the roles of X and Y in
the process above. This tool can be applied to certain problems in Optimal



Transportation, where a cost functional is optimized over a set of admissible
measures on a product space.

Keywords: Measure disintegration, Fubini’s theorem, Optimal Transporta-
tion.

Acknowledgements

This talk has been partially supported by Centro de Investigação emMatemática
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