

Centro de Investigação em Matemática e Aplicações Departamento de Matemática Programa de Doutoramento em Matemática

Seminário 23 de abril de 2019 CLAV-Sala 138-11h

Javier Cabello Sánchez Departamento de Matemáticas de la Universidad de Extremadura Instituto de investigación de Matemáticas de la Universidad de Extremadura

Extension of isometries, the geometry of unit spheres and a generalization of the curvature

Keywords: Extension of isometries, Mazur-Ulam Property, Curvature

Abstract

The so-called Tingley's Problem, see [5] can be stated as follows:

QUESTION. Let $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ be normed spaces and $\tau : S_X \to S_Y$ an onto isometry. Is τ the restriction of some linear isometry $\tilde{\tau} : X \to Y$?

This question is closely related to the Mazur-Ulam Theorem, ([3]), in the sense that every onto isometry $\tilde{\tau} : (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$ is linear provided $\tilde{\tau}(0) = 0$ and to Mankiewicz Theorem ([2]), that ensures that every onto isometry $\tau : F_X \to F_Y$ between connected open subsets, respectively, of $(X, \|\cdot\|_X)$ and $(Y, \|\cdot\|_Y)$ extends to an affine isometry $\tilde{\tau} : (X, \|\cdot\|_X) \to (Y, \|\cdot\|_Y)$. Namely, the relation with Mazur-Ulam Theorem has led to state that some normed space Xhas the Mazur-Ulam Property if every $\tau : S_X \to S_Y$ extends linearly, no matter which space is Y, see, e.g., [1]. In this talk we will expose some ideas that may solve the problem with tools closer to the Geometry realm than to the Mathematical Analysis one. These can be found in [4]. Our current efforts are mainly focused on the quest of metric invariants in the spheres of normed spaces, with special interest in two-dimensional spaces where we have managed to translate the problem to the following:

QUESTION. Let $(\mathbb{R}^2, \|\cdot\|_X)$ and $(\mathbb{R}^2, \|\cdot\|_Y)$ be two-dimensional normed spaces such that $(1,0), (0,1) \in S_X \cap S_Y$ and $\tau: S_X \to S_Y$ an onto isometry with $\tau(1,0) = (1,0), \tau(0,1) = (0,1)$. Does S_Y equal S_X ?

This way to state the problem has led to some advances we will expose. On the other hand, we have found a surprising metric invariant that can be seen as a generalization of the concept of curvature of a planar curve and that may lead to intriguing questions. Namely,

DEFINITION. Let $(X, \|\cdot\|_X)$ be a normed space, $\gamma : [0, 1] \to X$ a curve and $x = \gamma(t) \in X$ for some 0 < t < 1. Suppose that there is some c > 0 such that $\gamma \cap (x + \delta S_X)$ contains exactly two points for every $0 < \delta < c$. We define the curvature of γ at x measured with $\|\cdot\|_X$ as the following limit, whenever it exists:

(1)
$$\mathcal{K}_{\|\cdot\|_X}^{\gamma}(x) = \sqrt{\lim_{\delta \to 0} \frac{\delta - \|a - a'\|_X/2}{(\delta/2)^3}} = 2\sqrt{\lim_{a,a' \to x} \frac{2\|x - a\|_X - \|a - a'\|_X}{(\|x - a\|_X)^3}},$$

where $a \neq a'$ are the only points in γ such that $||x - a||_X = ||x - a'||_X = \delta$.

We have proved the following:

THEOREM. The curvature of every sphere $(\alpha, \beta) + \lambda S_2 \subset \mathbb{R}^2$, measured with $\|\cdot\|_2$ (in the sense of (1)) agrees in every point with $\frac{1}{\lambda}$.

References

- [1] Lixin Cheng and Yunbai Dong. On a generalized Mazur–Ulam question: Extension of isometries between unit spheres of Banach spaces. *Journal of Mathematical Analysis and Applications*, 377(2):464 470, 2011.
- [2] Piotr Mankiewicz. On extension of isometries in normed linear spaces. Bulletin de l'Académie Polonaise des Sciences, Série des Sciences Mathématiques, Astronomiques, et Physiques, 20:367 – 371, 1972.
- [3] Stanisław Mazur and Stanisław Ulam. Sur les transformations isométriques d'espaces vectoriels, normés. Comptes rendus hebdomadaires des séances de l'Académie des sciences, 194:946–948, 1932.
- [4] Javier Cabello Sánchez. A reflection on Tingley's problem and some applications. Journal of Mathematical Analysis and Applications, 2019.
- [5] Daryl Tingley. Isometries of the unit sphere. Geometriae Dedicata, 22(3):371–378, 1987.