

Study Plan

School: School of Sciences and Technology

Degree: Master

Course: Solar Energy Engineering (cód. 442)

1st Year - 1st Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
	The Solar Resource	Renewable Energy	6	Semester	156
EME10368M		Engineering			
	Electricity as an Energy Carrier	Electrotechnical	6	Semester	156
EME10369M		Engineering			
	Conversion and Storage Technologies	Renewable Energy	6	Semester	156
EME10370M		Engineering			
	Thermal Solar Energy Technologies	Renewable Energy	6	Semester	156
EME10371M		Engineering			
	Management and Energy Planning. Projects.	Renewable Energy	6	Semester	156
EME10372M		Engineering			

1st Year - 2nd Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
	Power Electronics	Electrotechnical	6	Semester	156
EME10373M		Engineering			
	Solar Concentration Technologies	Renewable Energy	6	Semester	156
EME10374M		Engineering			
	Solar Photovoltaic Energy Technologies	Renewable Energy	6	Semester	156
EME10375M		Engineering			
	Special Topics - Other Applications of Solar Energy	Renewable Energy	6	Semester	156
EME10376M		Engineering			
Dissertation					

2nd Year - 3rd Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
Dissertation					

Conditions for obtaining the Degree:

*** TRANSLATE ME: Para aprovação na componente curricular é necessário a aprovação (através de avaliação ou creditação) das seguintes unidades curriculares: {\} newline

 $\{\,\setminus\,\}$ newline

 $1^{\mathsf{O}} \; \mathsf{Semestre} \mathsf{:} \{\, \backslash \, \} \mathsf{newline}$

5 UC obrigatórias num total de 30 Ects $\{\,\backslash\,\}$ newline

 $\{\,\setminus\,\}$ newline

2^o Semestre: { \ } newline

4 UC obrigatórias num total de 24 Ects $\{\,\setminus\,\}$ newline

 $\{\,\setminus\,\}$ newline

Para obtenção do grau, é necessário também a aprovação na Dissertação, com um total de 36 ECTS, no 3.º Semestre. ***

Program Contents

Back

The Solar Resource (EME10368M)

- 1. The solar constant
- 2. Earth-Sun Astronomical relations
- 3. Interaction of solar radiation with the earth's atmosphere and surface
- 4. Solar radiation at the surface

Back

Electricity as an Energy Carrier (EME10369M)

- 1. Introduction
- Evolution of the power systems. Fuels. Electric power plants.
- 2. Mathematical programming problem
- Utility and basic definitions. Identification of the great. Karush-Kuhn-Tucker theorem. Lagrandeana relaxation. Dynamic programming.
- 3. Electricity market
- Market for electric energy. Equilibrium market. Environmental and economic dispatch. Solution without considering line losses.
- 4. Short-term planning for hydric groups
- Problem Formulation. Solution considering fixed fall.
- 5. Short-term planning for thermal groups
- Characterization of thermal groups. Solution using Lagrangian relaxation. Solution using dynamic programming
- 6. Short term hydrothermal coordination
- Problem formulation. Cases study using the Karush Kuhn Tucker theorem. Decomposition and coordination.

Back

Conversion and Storage Technologies (EME10370M)

Introduction

Thermal-chemical conversion: combustion

Thermal conversion - power: solar thermal and biomass

Electrical-mechanical conversion

Conversion chemistry - physical, electrical power y

Other energy storage technologies

Electricity generation centralized and decentralized

Back

Thermal Solar Energy Technologies (EME10371M)

Back

Management and Energy Planning. Projects. (EME10372M)

European regulations.

National energy landscape.

Regulatory framework for the national energy sector.

"Energy Resource Assessment"

Introduction to energy audit

Methodologies for environmental impact studies produced by energy projects.

Introduction to project management of energy

Professional ethics and environmental crimes

Economic and financial analysis of projects

Back

Power Electronics (EME10373M)

1. Introduction to power electronic converters

The importance of inverters in the context of electrical systems; Structure of converters.

2. Naturally commutated converters

The rectifier using diodes and thyristors with ideal adjacent circuits; connection of the converter to the generator using adjacent non-ideal circuits; Converters AC-AC; Modeling and control.

3. Forced commutated converters

Study of forced commutated circuits; DC-DC with ideal adjacent circuits and non-ideal circuits; Modeling and control.

Rack

Solar Concentration Technologies (EME10374M)

1.Introduction

- 2. Fundamentals of Optics Concentration
- 3. Types of Concentrators
- 4. Solar Trackers: technological aspects and implementation

Back

Solar Photovoltaic Energy Technologies (EME10375M)

Back

Special Topics - Other Applications of Solar Energy (EME10376M)