

Study Plan

School:	School of Sciences and Technology
Degree:	Master
Course:	Informatics Engineering (E-Learning) (cód. 728)

1st Year - 1st Semester

Component code	Name Scientific Area Field ECTS Duration		Hours		
Options-Group 1	N		ECTO		
Component code	Name	Scientific Area Field	ECTS	Duration	Hours
INF13255M	Signal analysis and processing	Informatics	0	Semester	150
INF13272M	Data Warehousing	Informatics	6	Semester	156
INF13275M	Multimodal Interaction	Informatics	6	Semester	156
INE13265M	Non-conventional Architectures and Programming	Informatics	6	Semester	156
	Data Compression and Coding	Informatics	6	Semester	156
INF13263M	Cloud Computing	Informatics	6	Semester	156
INF13256M					
INF13264M	Mobile and Ubiquitious Computing	Informatics	6	Semester	156
INF13274M	Game Design	Informatics	6	Semester	156
INF13276M	Software Engineering	Informatics	6	Semester	156
INF13258M	Information Extraction and Ontologies	Informatics	6	Semester	156
INF13262M	Applied Artificial Inteligence	Informatics	6	Semester	156
INE12272M	Data Mining	Informatics	6	Semester	156
	Search and Optimisation	Informatics	6	Semester	156
INF13257M	Parallal Programming	Informatics	6	Somostor	156
INF13266M			0	Semester	150
INF13259M	Information Retrieval for Text Bases	Informatics	6	Semester	156
INF13267M	Neural networks and deep learning	Informatics	6	Semester	156
INF13261M	Knowledge Representation and Reasoning	Informatics	6	Semester	156
INF13268M	Robotics	Informatics	6	Semester	156
INF13260M	Security of Computer Systems	Informatics	6	Semester	156
	Robotics Support Computational Systems	Informatics	6	Semester	156
	Natural Language Processing Systems	Informatics	6	Semester	156
	Database Technologies	Informatics	6	Semester	156
INF13271M		I	6		156
INF13666M	Human-Machine interfaces	Informatics	0	Semester	150
MAT13664M	Cryptography	Informatics	6	Semester	156
INF13667M	Embedded Systems	Informatics	6	Semester	156

1st Year - 1st Semester

C	Component code	Name	Scientific Area Field	ECTS	Duration	Hours			
(Options-Group 0								
	Component code	2	Name			Scientific Area Field	ECTS	Duration	Hours
		Inforn	nation Systems Managen	nent		Management	6	Semester	156
	GES10968M								
		Strate	egic Management			Management	6	Semester	156
	GES10935M								
		Statis	stics for Business I			Management	6	Semester	156
	GES12667M								
		1				1			

1st Year - 2nd Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
	Seminars	Informatics	6	Semester	156
INF13665M					

1st Year - 2nd Seme	ster				
Component code	Name	Scientific Area F	ield E	CTS Durat	ion Hours
Options-Group 1	Name	Scientific Area Field	FCTS	Duration	Hours
Component code	Signal analysis and processing	Informatics	6	Semester	156
INF13255M		internaties	Ũ	Semester	100
	Data Warehousing	Informatics	6	Semester	156
INF13272M					
	Multimodal Interaction	Informatics	6	Semester	156
INF13275M	New convertional Auchitectures and Decementary	I	6	Comparts	156
INF13265M	Languages	informatics	0	Semester	150
11115205101	Data Compression and Coding	Informatics	6	Semester	156
INF13263M	·····				
	Cloud Computing	Informatics	6	Semester	156
INF13256M					
	Mobile and Ubiquitious Computing	Informatics	6	Semester	156
INF13264IM	Came Design	Informatics	6	Somostor	156
INF13274M	Game Design	mormatics	0	Jemester	150
	Software Engineering	Informatics	6	Semester	156
INF13276M					
	Information Extraction and Ontologies	Informatics	6	Semester	156
INF13258M			-		1 - 0
	Applied Artificial Inteligence	Informatics	6	Semester	156
	Data Mining	Informatics	6	Semester	156
INF13273M		mormatics	Ū	Semester	100
	Search and Optimisation	Informatics	6	Semester	156
INF13257M					
	Parallel Programming	Informatics	6	Semester	156
INF13266M	Information Datained for Tout Pages	Information	6	Comostor	156
INF13259M	mormation Retrieval for Text Dases	informatics	0	Semester	150
	Neural networks and deep learning	Informatics	6	Semester	156
INF13267M					
	Knowledge Representation and Reasoning	Informatics	6	Semester	156
INF13261M			-		1 - 0
	Robotics	Informatics	6	Semester	156
	Security of Computer Systems	Informatics	6	Semester	156
INF13269M	Security of computer Systems	mormatics	0	Semester	150
	Robotics Support Computational Systems	Informatics	6	Semester	156
INF13270M					
	Natural Language Processing Systems	Informatics	6	Semester	156
INF13260M	Database Technologies	Information	6	Comerte	156
INF13271M	Database Technologies	informatics	0	Semester	150
101 1021 1101	Human-Machine interfaces	Informatics	6	Semester	156
INF13666M					
	Cryptography	Informatics	6	Semester	156
MAT13664M	5 1 11 10				150
	Embedded Systems	Informatics	6	Semester	156
111F 13007 1VI					

2nd Year - 3rd Sen	nester								
Component code	Name		Scientific Area F	ield EC		TS Durat		ration H	
	Preparation of the Dissertation Informatics				6	i Seme		ester 156	
INF13277M									
Component code	Namo	Sci	ontific Aroa Field	FC	TS		ation	Ho	ure
Component code	Signal analysis and processing	Info	ormatics	6	.13	Sem	ester	156	urs
INF13255M	Signal analysis and processing		induces	Ŭ		Jen	cotor	100	
	Data Warehousing	Info	ormatics	6		Sem	ester	156	
INF13272M									
	Multimodal Interaction	Info	ormatics	6		Sem	ester	156	
INF13275M			-						
	Non-conventional Architectures and Programming	Into	ormatics	6		Sem	ester	156	
INF13205IVI	Languages	Infe		6		Som	octor	156	
INF13263M	Data Compression and Coding		matics	0		Jen	ester	150	
111 10200101	Cloud Computing	Info	ormatics	6		Sem	ester	156	
INF13256M									
	Mobile and Ubiquitious Computing	Info	ormatics	6		Sem	ester	156	
INF13264M									
	Game Design	Info	ormatics	6		Sem	ester	156	
INF13274M				6		6		150	
	Software Engineering	Info	ormatics	6		Sem	ester	156	
IINF13270IVI	Information Extraction and Ontologies	Info	rmatics	6		Sem	octor	156	
INF13258M	mormation Extraction and Ontologies		matics	0		Jen	ester	150	
	Applied Artificial Inteligence	Info	ormatics	6		Sem	ester	156	
INF13262M									
	Data Mining	Info	ormatics	6		Sem	ester	156	
INF13273M									
	Search and Optimisation	Info	ormatics	6		Semester		156	
INF13257M				C		<u> </u>		150	
INE13266M	Parallel Programming	Into	ormatics	0		Sem	ester	150	
111113200101	Information Retrieval for Text Bases	Info	ormatics	6		Sem	ester	156	
INF13259M				Ŭ		00		200	
	Neural networks and deep learning	Info	ormatics	6		Sem	ester	156	
INF13267M									
	Knowledge Representation and Reasoning	Info	ormatics	6		Sem	ester	156	
INF13261M						_			
	Robotics	Into	ormatics	6		Sem	ester	156	
INF13208IVI	Security of Computer Systems	Info	rmatics	6		Sem	octor	156	
INF13269M	Security of computer Systems		matics	0		Jen	ester	150	
	Robotics Support Computational Systems	Info	ormatics	6		Sem	ester	156	
INF13270M									
	Natural Language Processing Systems	Info	ormatics	6		Sem	ester	156	
INF13260M									
	Database Technologies	Info	ormatics	6		Sem	ester	156	
INF13271M	Human Mashing interfac			6		c	4 -	150	
INE13666M	numan-machine interfaces	Info	ormatics	ю		Sem	ester	120	
	Cryptography	Info		6		Som	ester	156	
MAT13664M	Cryptography		matics	0		Jeil	CSLEI	100	
	Embedded Systems	Info	ormatics	6		Sem	ester	156	
	,						-		

2	and Year - 3rd Seme	ester								
0	Component code Name Scientific Area Field I							Duration		Hours
0	Options-Group 0									
	Component code	Name	Sci	entific Area Field	EC	TS	Dura	ation	Ho	urs
		Information Systems Management	Ma	nagement	6	ĺ	Sem	ester	156	
	GES10968M									
		Strategic Management	Ma	nagement	6		Sem	ester	156	
	GES10935M									
		Statistics for Business I	Ma	nagement	6		Sem	ester	156	
	GES12667M									
E	Dissertation									

2nd Year - 4th Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
Dissertation					

Conditions for obtaining the Degree:

*** TRANSLATE ME: Para aprovação na componente curricular é necessário a aprovação (através de avaliação ou creditação) das seguintes unidades Curriculares:

$1.^{o}Ano\{ \} newline$
1° Semestre:
4 UC Optativas do Grupo 1 num total de 24 Ects
1 UC Optativa do Grupo 0 num total de 6 Ects
2° Semestre: { \ } newline
1 UC Obrigatória num total de 6 Ects
4 UC Optativas do Grupo 1 num total de 24 Ects
2.° Ano $\{ \ \}$ newline
3° Semestre: { \ } newline
1 UC Obrigatória num total de 6 Ects
1 UC Optativa do Grupo 1 num total de 6 Ects
1 UC Optativa do Grupo 1 OU do Grupo 0 num total de 6 Ects
{ \ } newline
Para obtenção do grau de Mestre é necessário também a aprovação em Dissertação, no total de 42 ECTS, no 3.º e 4.º Semestre. ***

Program Contents

Signal analysis and processing (INF13255M)

Types of signals: Discrete and continuous time signals. Unidimensional and bidimensional signals, audio and image. Sampling: sampling frequency, Nyquist theorem, aliasing. Frequency analysis of discrete time signals: Discrete Fourier Transform, Fast Fourier Transform (FFT). Z-Transform. Linear systems: time response, convolution, FIR and IIR systems. Frequency response of linear systems. Low-pass, band-pass and high-pass filters. Linear filter design: Butterworth and Chebychev. Filters based on the FFT. Linear prediction: minimization of the mean square error, Yule-Walker equations, Levinson and Durbin algorithms. Nonlinear filters: median filter for noise and ouliers removal. Stochastic processes/ Prediction, filtering and smoothing problems. Space state and Kalman Filter. Digital Signal Processors (DSP).

Back

Data Warehousing (INF13272M)

- 1. Systems modeling: fundamental principles.
- 2. Introduction to Data Warehousing
- 2.1 Fundamental concepts
- 2.2 The importance of Information in organizations
- 2.3 Benefits and Reasons to Create a Data Warehouse System
- 3. Components of a Data Warehouse
- 4. The Dimensional Model
- 4.1 Fact tables
- 4.2 The dimension tables
- 4.3 Association between fact tables and dimension tables
- 5. Case Studies
- 6. Building the Data Warehouse
- 6.1 Design steps
- 6.2 Bus Matrix
- 6.3 Dimension tables hierarchies
- 6.4 Bridge tables
- 7. Data analysis
- 7.1 Cube
- 7.2 OLAP tools

Multimodal Interaction (INF13275M)

Human-Machine Interaction Concepts Interaction Modes Speech and write as interface Voice synthesis Speech Recognition Writing recognition Tangible Interfaces Computer vision: image processing methods (features, filters, edge), automatic detection, recognition and tracking Architectures for Multimodal Interaction Systems and approaches to the combination of modalities Perspectives of future development in the area of Human-Machine Interaction Recent case studies with Deep Learning in Person-Machine or Environment-Machine interaction processes

Back

Non-conventional Architectures and Programming Languages (INF13265M)

UMA and NUMA parallel architectures. Shared memory. DSM and PGAS memory systems. Programming of concurrent systems with POSIX Threads and MPI. Virtualization. Languages ​​for concurrent systems. Streaming languages. Grids and Cloud Infrastructure (SaaS / PaaS / IaaS). Performance analysis.

Back

Data Compression and Coding (INF13263M)

Introduction to the Shannon information theory. Source-channel-Receiver. Models for an information source: discrete memoryless source and sources with memory. Markov chains. Stationary distributions. Definition of entropy, conditional entropy and mutual information. Properties. Source coding theorem. Entropy encoding algorithms: Shannon, Shannon-Fano and Huffman codes. Shannon-Fano-Elias code and arithmetic coding. Universal encoding algorithms: Adaptive Huffman coding. Lempel-Ziv codes: LZ77, LZ78, LZW. Definition of channel capacity for discrete memoryless channels. Blahut and Arimoto algorithm. Channel coding theorem. Channel coding algorithms. Error detection and correction. Parity check. Repetition and Hamming codes. Turbo codes and low density parity check codes (LDPC). Introduction to lossy compression and rate-distortion theory.

Cloud Computing (INF13256M)

Cloud Computing: origin and fundamental characteristics Cloud types and delivery models Using and managing containers Virtualização Storage as a service Distributed databases Computing as a service Scale, provisioning and elasticity: self-managing frameworks and strategies Building a SaaS solution Data analytics in cloud environment Machine learning in the cloud Data streaming Big Data and MapReduce Security and privacy concerns in cloud environment

Back

Mobile and Ubiquitious Computing (INF13264M) Introduction to Ubiquitous Computing Wireless communication networks Mobile adpative computing Data dissemination and management Context-aware computing Location-based services Systems for mobile plataforms: Symbian Android iOS

Game Design (INF13274M)

Elementary Blocks Bases Elements of game design Drawing of puzzles Convert digital games into physical games Chance and ability Elements of chance Strategy elements Elements of Dexterity Balance between chance and skill Writing Game Concepts Intellectual property Development of sequels Reach a market Learn an unknown genre Draw a game to tell a story Additive and subtractive design Add and remove mechanics Multiplayer games Special topics (optional) The user interface Games and art Games as pedagogical tools Serious games Casual games Games and social networks

Software Engineering (INF13276M)

Software testing Test based software development processes Behavior based software development processes Software evolution Evolution process Evolution dynamics Software maintenance Management of legacy systems Software reuse Software reuse methods Applicational frameworks COTS reuse Component based Software Engineering Components Component models Component composition Engineering of distributed software Associated problems Server-client systems Architecture patterns Software as a service Service based architectures Services as reusable components Service engineering Service based software development Software execution environments Containers Virtual machines Configuration management System building Deployment processes Continuous integration Continuous deployment Infrastructure configuration Software management Project management Project planning Software quality Process improvement

Back

Information Extraction and Ontologies (INF13258M)

1. Basic concepts: document collections, information extraction, text mining, ontologies, question-answer systems.2. Evaluation measures. Standard measures - precision, recall, f-measure - and conferences: QA @ CLEF, TREC QA.

 $3. \ \ NLP \ \ symbolic \ \ approaches: \ \ lexicon, \ \ syntax, \ \ semantics, \ \ pragmatics, \ ontologies. \\ 4. \ \ Non \ \ symbolic \ \ approaches: \ \ extraction \ of information \ through \ \ automatic \ \ learning \ \ techniques - SVMs, \ \ neural \ \ networks/deep \ \ learning.$

5. Hybrid approaches.

6. Case Studies: automatic ontology population, semantic tagging - "semantic role labeling", automatic summarization, question-answer systems.

Applied Artificial Inteligence (INF13262M)

Uncertain knowledge and reasoning

(1) Introduction to Uncertainty

(2) Theory of probability: Syntax and semantics of probability theory, Bayes' rule and Independence;

(3) Introduction to Bayesian Networks: Syntax, Semantics; distributions parameterized

(4) Inference in Bayesian networks; Exact Inference by enumeration, elimination of variables; Approximate Inference by Stochastic Simulation; by Markov Chain Monte Carlo

(5) Temporal Probability Models: Time and uncertainty Inference, hidden Markov models, Kalman filters, dynamic Bayesian networks, particle filtering

(6) Applications of Bayesian Networks and Models of Probability: Speech Recognition, Task natural language processing.

(7) Rational decisions: preferences, utility networks, decision and value of information

(8) Learning from observation, learning by induction, decision trees; Measuring the performance of learning, statistical learning.; Bayesian Learning: learning maximum likelihood parameters with complete data.

Back

Data Mining (INF13273M)

The Data Mining process

Types of problems: pattern association, clustering, outlier detection, classification

Data preparation: extraction, cleaning, selection, reduction and transformation of attributes, sampling and subsampling Mining of: streams, text, time series, discrete sequences, spatial data, graphs, web data

Measures of similarity and distances

Problems, approaches and algorithms

Association of patterns

Analysis of clusters

Algorithms: K-means, EM, PCA, SOM, ...

Performance evaluation

Classification

Ensemble methods. Problems with unbalanced classes

Performance metrics: precision, recall, F-measure, ROC curve, Log loss and others (cost function, Cohen's kappa, G-score) Regression

linear and nonlinear models

performance evaluation: quadratic errors, absolute errors, absolute errors, correlation coefficient

Analysis of outliers (supervised and unsupervised)

Measures of complexity/simplicity

Mixed performance criteria

Preservation of privacy

Back

Search and Optimisation (INF13257M)

State-graphs and the A* algorithm Constraint Satisfaction Problems (CSP) Constraint Solving Techniques Constraint Programming Combinatorial Optimization Problems (COP) Local Search techniques Metaheuristics Applications

Parallel Programming (INF13266M)

Parallelism and competition

- Systems for parallel computing
- multicore, multiprocessor, cluster, heterogeneous
- shared and distributed memory
- caches, consistency and consistency
- communication and synchronization
- Support for parallel programming
- atomic accesses
- lock, traffic light, monitor
- critical section, race
- exchange of messages
- Programming Models
- threads Posix
- OpenMP
- MPI

Drawing of parallel algorithms

- task parallelism
- data parallelism
- standards for parallelism

Performance of parallel programs

Back

Information Retrieval for Text Bases (INF13259M)

- 1. Introduction; main concepts and problems
- 2. Boolean, vectorial, and probabilistic models
- 3. Indexing, lemmatization, stop-words
- 4. Ontologies
- 5. Query Languages
- 6. Evaluation
- 7. Searching the web
- 8. Semantic web
- 9. Text classification
- 10. Text clustering
- 11. Information extraction
- 12. Question-Answering systems

Back

Neural networks and deep learning (INF13267M)

Basic concepts Basic architecture Perceptron Multi-layer networks Activation and loss functions Network training: backpropagation algorithm Practical issues overfitting, vanishing, convergence difficulties Common Architectures rbf (radial basis function), rbm (restricted boltzmann machine), rnn (recurrent neural network), cnn (convolution neural network) Reinforcement learning Semi-supervised learning and active learning

Knowledge Representation and Reasoning (INF13261M)

- (1) Conceptual maps and semantic networks.
- (2) propositional descriptive logics
- (3) Formalization of Knowledge Bases
- (4) Ontologies
- (5) Descriptive Logic and Databases.
- (6) Time and causality
- (7) Semantic Web

Back

Robotics (INF13268M)

Paradigms in robotics. Sensors, actuators, perception, planning and control.

Sensors:

A/D converters, sampling frequency and resolution.

Physical quantities: position, velocity and acceleration, force; perception of the environment, distances and images.

Actuators:

D/A converters.

Motors and drivers. Sound and Image.

Embedded Systems: Microcontrollers, microprocessors and single board computers.

Operating Systems: Real time systems, Robot Operating System (ROS).

Planning and control hierarchy.

Control:

Dynamical systems and stability.

Trajectory following.

Control algorithms.

Planning: Graphs and potentials. Optimization.

Perception: Building world models (vision, LIDAR, rangefinders, etc).

Simulation.

Security of Computer Systems (INF13269M)

- Malicious Software
- Types of Malicious Software
- Countermeasures
- Denial-of-Service Attacks
- Distributed Denial-of-Service
- Defenses
- Responses
- Intrusion Detection
- Intruders
- Intrusion Detection
- Analysis Approaches
- Honeypots
- Operating System Security
- Security Planning and Maintenance
- Application Security
- Linux/Unix, Windows and Virtualization Security
- Internet Security Protocols and Standards
- Secure E-Mail and S/MIME
- SSL and TLS
- HTTPS
- IPv4 and IPv6
- Internet Authentication Applications
- Kerberos
- X.509
- Public-Key Infrastructure
- Wireless Network Security
- Mobile Device Security
- Linux Security
- Security Model
- Filesystem Security
- Vulnerabilities
- Access Controls
- Security Auditing
- Security Auditing Architecture
- Security Audit Trail
- Logging Function
- Audit Trail Analysis
- Legal and Ethical aspects
- Cybercrime and Computer Crime
- Intellectual Property
- Privacy
- Ethical Issues

Robotics Support Computational Systems (INF13270M)

Key elements General Challenges of Robotics Perception Acting Behavior Vision and Mapping Simulation and Reality Routines Walking on the line (2D) Patrol (2D) Bring the warehouse (3D) Extensions (optional) Sensors and actuators Mobile Robots Software Libraries

Back

Natural Language Processing Systems (INF13260M)

- (1) lexical analysis;
- (2) Parsing: logic grammars (DCGs, XGS), tags, and HPSGs CFG.
- (3) Semantic Analysis: DRT, and other semantic for natural language, compositionality.
- (4) Pragmatic Analysis: Theory of speech acts , anaphora resolution, dialogue.
- (5) Applications of natural language processing systems

Back

Database Technologies (INF13271M)

- 1. Database Environment
- 2. Database Design
- 3. Application Design
- 4. Data Availability
- 5. Performance Management
- 6. Database Security
- 7. Database Backup and Recovery
- 8. Distributed databases

Human-Machine interfaces (INF13666M)

Human-Computer Interaction (HCI): what, why, when? Human and technological factors in HCI Characteristics of interactive systems Interaction models Interaction of styles interaction paradigms Usability principles User and task analysis Interaction design process: Design Rules Prototyping Dialogs design Screen design Evaluation techniques

Back

Cryptography (MAT13664M)

Integers Congruences and Residue Class Rings Encryption Probability DES Public-Key Discret Logarithms Hash Functions Digital Signatures Finite Fields Elliptic Curves

Back

Embedded Systems (INF13667M)

- Introduction: motivation and applications.
- Smart-cards
- mobile phones
- control systems
- sensor networks
- Embedded system architectures
- ARM architectures, intel, MIPS, microcontrollers PICs, Atmel AVR 2
- Operating systems for embedded systems
- Communication in embedded systems and distributed embedded systems
- Real-time systems
- critical systems, digital processing and control systems
- Design methodologies and design of embedded systems
- \bullet Development for embedded systems
- Development platforms
- Memory management
- Cross-compilation
- Applications

• Final work: work of high complexity requiring a vision of integrating several sub-systems and the use of different applications / programming tools

Information Systems Management (GES10968M)

- 1. Information, processes and business.
- 2. Information systems to the organizations.
- 3. Evaluation of the investments on information systems.
- 4. Emerging trends on information systems.

Back

Strategic Management (GES10935M)

- 1 Introduction;
- 2 Conceptual pictures of reference;
- 3 Roots and evolutionary logics of the strategy;
- 4 The strategic manager;
- 5 Schools of strategic approaches: several typologies;
- 6 Innovation and strategy;
- 7 Strategic classic planning versus strategic modern planning: multiple strategic decisions.

Back

Statistics for Business I (GES12667M)

- Module 1. Descriptive Statistics
- 1.1. Central measure location

1.2. Deviation measures (Variance, Standard error, Correlation coefficient it's analysis as a measure of market's risk) Module 2. Making a Database using the SPSS program

- Module 3. Inference statistics
- 3.1 Estimation and properties of estimators
- 3.2 Confidence intervals
- 3.3. Tests of statistical hypothesis
- Module 4. Regression analysis with seccional data
- 4.1 Hypothesis of OLS
- 4.2. Estimation of OLS
- 4.3. Properties of OLS estimators
- 4.4. Regression analysis with qualitative independent variables
- 4.5. Inference analysis in regression context
- 4.6. Empirical applications in management

Back

Seminars (INF13665M)

R&D projects presented by IT companies; includes a seminar on "Research Methods".

Back

Preparation of the Dissertation (INF13277M)

Techniques and methods in research projects

Research of scientific information:

research and select publications in databases of scientific publications and other types of publications

Guest Tutorials

Elaboration and defense of the report of the dissertation project