

Study Plan

School: School of Sciences and Technology

Degree: Master

Course: Environmental Chemical Analysis (cód. 172)

1st Year - 1st Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours	
	Sampling and Processing of Environmental Samples	Chemistry	6	Semester	156	
QUI07866M						
	Experimental Planning and Design	Mathematics	4	Semester	104	
MAT07867						
QUI07868	Atmospheric Pollution and Gas Emissions	Physics and Che-	4	Semester	104	
		mistry				
QUI07869	Chemistry of Soil and Sediments	Chemistry	5	Semester	130	
	Chemistry of Aquatic Systems	Chemistry	6	Semester	156	
QUI07870M						
QUI07871	Toxicology of most Relevant Pollutants	Biochemistry	4	Semester	104	

1st Year - 2nd Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
	Analysis, Treatment and Valuation of Liquid Waste	Chemistry	6	Semester	156
QUI07872M					
QUI07873	Analysis, Treatment and Valuation of Solid Waste	Chemistry	4	Semester	104
QUI07874	Planning, Management and Organisation of Analysis Laboratories	Chemistry	6	Semester	156
QUI07875	Quality, Standards and Certification of Laboratories	Chemistry	4	Semester	104
QUI07876M	Advanced Analytical Techniques I	Chemistry	6	Semester	156
QUI07877	Advanced Analytical Techniques II	Chemistry	5	Semester	130

2nd Year - 3rd Semester

Component code	Name			Scientific Area Field	ECTS	Duration	Hours	
QUI07878	Research Methodologies Che			Chemistry	2	Semester	52	
Mandatory alterna	tives							
Component code	Name	Scientific Area Field	ECTS	Duration	Hours	S		
Dissertation								
Internship								
internship								

2nd Year - *** TRANSLATE ME:4° semestre ***

Component code	Name				Scientific Area Field	ECTS	Duration	Hours
	Seminars			Chemistry	3	Year	24	
QUI08171M								
Mandatory alterna	tives					•		
Component code	e Name	Scientific Area Field	ECTS	Duration	Hours	S		
Dissertation								
Internship								

Conditions for obtaining the Degree:

*** TRANSLATE ME: Para aprovação na componente curricular deste Mestrado, é necessário a aprovação (através de avaliação ou creditação), das seguintes unidades curriculares: { \ } newline
1.º Semestre{\}newline
- 6 UC Obrigatórias num total de 29 ECTS{\}newline
2.º Semestre {\} newline
- 6 UC Obrigatórias num total de 31 ECTS{\}newline
3.° Semestre{\}newline
- 1 UC Obrigatória num total de 2 ECTS{\}newline
4.° Semestre{\}newline
- 1 UC Obrigatória num total de 3 ECTS{\}newline
$\{ \setminus \}$ newline
Para obtenção do grau, é necessário também a aprovação na Dissertação ou Relatório de Estágio, com um total de 55ECTS, no 3.º e 4.º Semestre. ***

Program Contents

Back

Sampling and Processing of Environmental Samples (QUI07866M)

Back

Experimental Planning and Design (MAT07867)

Back

Atmospheric Pollution and Gas Emissions (QUI07868)

Back

Chemistry of Soil and Sediments (QUI07869)

Back

Chemistry of Aquatic Systems (QUI07870M)

- 01 Introduction: objectives and scope of the curricular unit; water as source; preservation and propagation of life historical and socio-economic perspectives, the hydrological cycle, the human water cycle the concept of sustainable development.
- 02 Chemical and physical properties of water: ecological implications.
- 03 Thermodynamics of ionic hydration: kinetic control of hydrolysis reactions.
- O4 Chemical equilibriums in natural waters: acid-base equilibrium (hydration effects; polyphosphates in water; the carbon dioxide/carbonate system); solubility equilibriums (precipitation and dissolution, complexation and chelates chemical speciation); redox equilibriums (dissolved oxygen, diagrams pE pH).
- Natural cycle and regulation of trace metals in aquatic environments: Global cycling of metals; solid water interface; complexation by humic substances; hydrophobic systems; regulation of heavy metals in rivers, lakes and oceans.
- 06 Introduction to aquatic microbial biochemistry: microbial transformations.
- 07 Photochemical processes in natural waters.
- 08 Regulation of the chemical composition of natural waters: biogeochemical cycles of carbon, nitrogen and sulfur; Interdependence of biogeochemical cycles.
- 09 Nature and types of aquatic pollutants: Eutrophication.
- 10 Treatment and disinfection of different water matrices: Origins and uses of water; legal and institutional framework in the water industry, drinking water production; qualitative and quantitative characterization of water quality indicators; recycling and reuse.
- 11 Modelling applied to environmental systems: A historical perspective (the main systems and problems modeled, classification of models, the modelling process); models of BOD/COD; stratification models; models of eutrophication; structural dynamic models; new modelling techniques.

Back

Toxicology of most Relevant Pollutants (QUI07871)

Back

Analysis, Treatment and Valuation of Liquid Waste (QUI07872M)

Back

Analysis, Treatment and Valuation of Solid Waste (QUI07873)

Back

Planning, Management and Organisation of Analysis Laboratories (QUI07874)

Back

Quality, Standards and Certification of Laboratories (QUI07875)

Back

Advanced Analytical Techniques I (QUI07876M)

Back

Advanced Analytical Techniques II (QUI07877)

Atomic Absorption and Emission
New techniques based on the use of electrothermal atomizers, hydride generator and plasma Electrochemical methods
Square wave voltammetry and differential pulse
Advantages and disadvantages of implementing the new methods.

Back

Research Methodologies (QUI07878)

Back

Seminars (QUI08171M)