

Study Plan

School:	School of Sciences and Technology
Degree:	Master
Course:	Agricultural Engineering (cód. 448)

1st Year - 1st Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
	Bio-system Soil-Water-Plant-Atmosphere	Rural Engineering	6	Semester	156
ERU10436M					
	Experimental Design	Mathematics	6	Semester	156
MAT10167M					
	Applied Hydraulics	Rural Engineering	6	Semester	156
ERU10437M					
	Environmental Control	Rural Engineering	6	Semester	156
ERU10438M					
	Agri-Business Planning	Management	6	Semester	156
GES08066M					

1st Year - 2nd Semester

Component code	Name	Scientific Area Field	ECTS	Duration	Hours
	Plant Breeding and Biotechnology	Agronomy	6	Semester	156
FIT10439M					
	Crop Protection	Agronomy	6	Semester	156
FIT10440M					
	Temperate Fruit Production	Agronomy	6	Semester	156
FIT10441M					
	Horticulture Herbaceous	Agronomy	6	Semester	156
FIT10442M					
	Analysis and Technology of Irrigation Systems	Rural Engineering	6	Semester	156
ERU10443M					

2nd Year - 3rd Semester

omponent code	Name		Scientific Area F	ield	ECTS	5 Durat	ion Hou
	Project in Agronomical Engineering		Rural Engineering		9	Semes	ter 234
RU10444M							
	Dissertation Seminar		Rural Engineering		3	Semes	ster 78
RU10445M							
Froup of Options							
Component code	e Name	Sci	entific Area Field	EC	TS 🛛	Duration	Hours
	Crop Protection II	Agi	ronomy	6		Semester	156
FIT10446M							
	Conservation Agriculture	Agi	ronomy	6		Semester	156
FIT10447M							
	Precision Agriculture	Ru	ral Engineering	6		Semester	156
ERU10452M							
	Integrated Management of Agricultural Wastes	Ru	ral Engineering	6		Semester	156
ERU13964M							

2nd Year - 4th Semester Component code Name Scientific Area Field ECTS Duration Hours Dissertation

Conditions for obtaining the Degree:

*** TRANSLATE ME: Para aprovação na componente curricular é necessário a aprovação (através de avaliação ou creditação das seguintes unidades curriculares:

1² Semestre{\}newline
5 UC obrigatórias num total de 30 Ects{\}newline
{\}newline
2² Semestre{\}newline
5 UC obrigatórias num total de 30 Ects{\}newline
{\}newline
3² Semestre:{\}newline
2 UC Obrigatórias num total de 12 Ects{\}newline
1 UC optativa num Total de 6 Ects{\}newline
{\}newline

Para obtenção do grau é necessário também a aprovação em Dissertação, no total de 42 ECTS, no 3.º e 4.º Semestre. ***

Program Contents

Back

Bio-system Soil-Water-Plant-Atmosphere (ERU10436M)

I. Climatology and Meteorology. Weather elements and factors. Climatic classifications. Radiation and radiation balance. Photoperiodism. Energy balance at the soil surface. Transport of momentum, energy and mass in the boundary layer. Modified environments. Soil temperature control. Climatic needs of crops. II. Soil intrinsic and relative characteristics. Water content and characterization of the state of water in the soil. Water retention in the soil. Infiltration and redistribution of water in the soil. Crop water requirements. New technologies in irrigation management, stress indexes. Water use efficiency. Effects of excess salts in the soil on crop productivity. Balance of salts in the soil. Control of salinity in the soil. Water quality for irrigation. III. Brief review of the anatomy and physiology of plants. The water flow in the plant. The assimilation of carbon. Growth regulators, photo-periodism and vernalization. The assessment of the physiological state of plants.

Back

Experimental Design (MAT10167M)

Scientific method and experimental design.

Analysis of variance models: fixed effects (single and multiple factor), random effects (single and multiple factor) and mixed effects.

Split-plot and nested designs.

Multiple comparisons.

Complete and incomplete block designs. Latin square designs.

Non-parametric approaches.

Simple linear regression model and multiple regression model (estimation, inference, prediction, model adequacy and validation). Diagnostics for influence points, outliers,

multicollinearity and autocorrelation. Model selection.

Analysis of Covariance.

Nonlinear Regression.

Back

Applied Hydraulics (ERU10437M)

1. Fluids physical properties. 2. Hydrostatics: Hydrostatic pressure; Pressure measurement; Manometers; hydrostatic impulsion, calculation of impulsion over floodgates (plane and radial). 3. Hydrocinematics: Types of flow; Continuity equation; Applications. 4. Hydrodynamics: Bernoulli Theorem, application to real fluids; Hydraulic power. 5. Pressurized flows: Friction losses in irrigation pipes; Local friction losses; Calculation of installations and pipe trajectory. 6. Pumps: Pump selection; Problems in centrifugal pumps: cavitation; Pump stations. 7. Free surface flow: Types of flow; Application of the Bernoulli Th. to open channels flow; Uniform flow in channels; Gradually varied flow: backwater effect and hydraulic jump; Flow control in open channels; Irrigation and drainage channels design. 8. Holes and Weirs: Control and measurement of flow.

Back

Environmental Control (ERU10438M)

- 1. Introduction. Importance of the environmental control in rural buildings
- 2. Energy and mass balances. General and simplified equations; Project conditions; Heat transfer processes.
- 3. Psychometrics. State equations; Temperature and air humidity; psychometric map; Environmental control processes.
- 4. Thermal insulation. Heat transfer through construction materials; Thermal resistance and global heat transfer coefficient.
- 5. Condensation. Surface condensation and control methods.
- 7. Ventilation. Objectives; methods to calculate ventilation rates; Natural and forced ventilation.

8. Acclimatization. Heating systems. Cooling systems; Resolution of problems to determine heating/cooling needs for greenhouses, animal buildings, etc.

Back

Agri-Business Planning (GES08066M)

Back

Plant Breeding and Biotechnology (FIT10439M)

Back

Crop Protection (FIT10440M)

Back

Temperate Fruit Production (FIT10441M)

Back

Horticulture Herbaceous (FIT10442M)

1. Introduction Economic importance of vegetal production in Portugal Nutritional importance of vegetables. Nitrates in leafy vegetables 2. Ecophysiology of vegetable crops Bioclimatic elements. Cardinal temperatures. Thermoperiod. Vernalization. Photoperiodic response Specific cases: frigo and fresh strawberry production; nursery of tomato plants for industry and greenhouse. Rotations. 3. Climate change in horticultural production - adaptation and mitigation **Biophysical Impacts** Adaptation and mitigation measures 4. Organic production Discussion on organic vs conventional production mode. Cultural techniques, quality of raw material 5. Salinity. Practices to Prevent and Mitigate Soil Salinization 6. Sustainable fertilization of vegetable crops Potato - a case study Processing Tomato - a case study

7. Soilless cultivation

Back

Analysis and Technology of Irrigation Systems (ERU10443M)

Introduction: Soils, soil water, water retention by the soil, infiltration.

Crop water requirements: Evapotranspiration, calculation methodologies.

Water management: Management based on evapotranspiration, soil moisture content and canopy characteristics. Equipment. Irrigation scheduling. Deficit and supplemental irrigation.

Irrigation methods and systems: Performance indicators.

Sprinkler irrigation: General principles of sprinkler irrigation operation and agronomic and hydraulic design. Equipment. Systems performance evaluation.

Drip irrigation: Principles of agronomic and hydraulic design and operation. Equipment: drippers, tubing, filters, pumps, electro valves, etc. Systems performance evaluation.

Surface Irrigation: Principles of surface Irrigation and management. Principles of surface irrigation systems design. Automation and equipment. Evaluation and improvement of irrigation quality.

Back

Project in Agronomical Engineering (ERU10444M)

Back Dissertation Seminar (ERU10445M)

Back

Crop Protection II (FIT10446M)

The subject(s) of this course will change every year. Matters to be covered are related to plant protection in several ways, require previously knowledge on several areas, and will be dealt with by different conference speakers. These will be professors from both national and international universities, specialists and policy makers concerning agricultural/food industries related fields. Examples of topics to be addressed: 'Climate

changes and risk of emergence of new parasites'; 'Biological control of plant parasites in agriculture – where do they come from and what is their fate'; 'Biofungicides – case studies'; 'Mycotoxins in crops, a threat to animal and human health'; 'Transgenic herbicide - resistance crops: a potential to increase food yield?'; 'Biosecurity and bioterrorism'; 'New strategies to stimulate plant innate defense mechanisms'; 'New developments in epidemic risk forecast'; etc.

Back

Conservation Agriculture (FIT10447M)

Back

Precision Agriculture (ERU10452M)

Introduction to Precision Agriculture: Precision Agriculture Cycle.

Precision Agriculture and GPS

The importance of GIS and Remote Sensing in Precision Agriculture

The decision: i) in real time; ii) based in previous information. Study cases: The yield spatial and temporal variability (cereals: dry and irrigation production), pasture quality differential management, grape quality differential management, precision irrigation.

Production factors differential application.

Back

Integrated Management of Agricultural Wastes (ERU13964M)

- 1. Introduction to Integrated waste management. Definitions and Regulations.
- 2. Notions of Circular Economy and its applications in agriculture
- 3. Hierarchy and phases of the waste integrated Management
- 3.1. Production
- 3.2 Collection
- 3.3. Storage
- 3.4. Treatment
- 3.5. Utilization
- 4. Valorisation of agricultural wastes
- 4.1. Agronomic valorisation
- 4.2. Energetic valorisation
- 4.3. Other ways of valorisation
- 5. Examples of good practices and Industrial Symbiosis